Non - Zero Lyapunov Exponents and Axiom

نویسنده

  • Vítor Araújo
چکیده

Let f : M → M be a C 1 diffeomorphism of a compact manifold M admitting a dominated splitting T M = E cs ⊕ E cu. We show that if the Lyapunov exponents of f are nonzero and have the same sign along the E cs and E cu directions on a total probability set (a set with probability one with respect to every f-invariant measure), then f is Axiom A. We also show that a f-ergodic measure whose Lyapunov exponents are all negative must be concentrated on the orbit of a sink (without using Hölder continuity on the derivative Df).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lyapunov Spectrum for Conformal Expanding Maps and Axiom-A Surface Diffeomorphisms

Lyapunov exponents measure the exponential rate of divergence of infinitesimally close orbits of a smooth dynamical system. These exponents are intimately related to the global stochastic behavior of the system and are fundamental invariants of a smooth dynamical system. In [EP], Eckmann and Procaccia suggested an analysis of Lyapunov exponents for chaotic dynamical systems. This suggestion was...

متن کامل

Removing zero Lyapunov exponents in volume-preserving flows

Baraviera and Bonatti in [1] proved that it is possible to perturb, in the Ctopology, a volume-preserving and partial hyperbolic diffeomorphism in order to obtain a non-zero sum of all the Lyapunov exponents in the central direction. In this article we obtain the analogous result for volume-preserving flows. MSC 2000: primary 37D30, 37D25; secondary 37A99. keywords: Dominated splitting; volume-...

متن کامل

Robust Vanishing of All Lyapunov Exponents for Iterated Function Systems

Given any compact connected manifold M , we describe Copen sets of iterated functions systems (IFS’s) admitting fully-supported ergodic measures whose Lyapunov exponents alongM are all zero. Moreover, these measures are approximated by measures supported on periodic orbits. We also describe C-open sets of IFS’s admitting ergodic measures of positive entropy whose Lyapunov exponents along M are ...

متن کامل

The link between the shape of the Aubry - Mather sets and their Lyapunov exponents

We consider the irrational Aubry-Mather sets of an exact symplectic monotone C 1 twist map, introduce for them a notion of " C 1-regularity " (related to the notion of Bouligand paratingent cone) and prove that : • a Mather measure has zero Lyapunov exponents iff its support is almost everywhere C 1-regular; • a Mather measure has non zero Lyapunov exponents iff its support is almost everywhere...

متن کامل

On Classification of Resonance-free Anosov Z Actions

We consider actions of Z, k ≥ 2, by Anosov diffeomorphisms which are uniformly quasiconformal on each coarse Lyapunov distribution. These actions generalize Cartan actions for which coarse Lyapunov distributions are onedimensional. We show that, under certain non-resonance assumptions on the Lyapunov exponents, a finite cover of such an action is smoothly conjugate to an action by toral automor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004